
Birdy Documentation
Release 0.6.8

Birdhouse

Jan 13, 2021

CONTENTS

1 Installation 3

2 Examples 5

3 Development 15

4 API Reference 17

5 Change History 21

Python Module Index 27

Index 29

i

ii

Birdy Documentation, Release 0.6.8

Birdy (the bird) Birdy is not a bird but likes to play with them.

Birdy is a Python library to work with Web Processing Services (WPS). It is using OWSLib from the GeoPython
project.

You can try Birdy online using Binder (just click on the binder link below), or view the notebooks on NBViewer.

Birdy is part of the Birdhouse project.

Full documentation is on ReadTheDocs.

CONTENTS 1

http://birdy.readthedocs.io/en/latest/?badge=latest
https://github.com/bird-house/birdy/actions
https://www.codacy.com/app/cehbrecht/birdy?utm_source=github.com&utm_medium=referral&utm_content=bird-house/birdy&utm_campaign=Badge_Grade
https://github.com/bird-house/birdy/blob/master/LICENSE.txt
https://gitter.im/bird-house/birdhouse?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge
https://mybinder.org/v2/gh/bird-house/birdy.git/v0.6.8?filepath=notebooks
https://nbviewer.jupyter.org/github/bird-house/birdy/tree/v0.6.8/notebooks/
http://bird-house.github.io/en/latest/
http://birdy.readthedocs.org/en/latest/

Birdy Documentation, Release 0.6.8

2 CONTENTS

CHAPTER

ONE

INSTALLATION

1.1 Install from Anaconda

$ conda install -c conda-forge birdy

1.2 Install from GitHub

Check out code from the birdy GitHub repo and start the installation:

$ git clone https://github.com/bird-house/birdy.git
$ cd birdy
$ conda env create -f environment.yml
$ python setup.py install

3

https://anaconda.org/conda-forge/birdy
https://anaconda.org/conda-forge/birdy
https://anaconda.org/conda-forge/birdy

Birdy Documentation, Release 0.6.8

4 Chapter 1. Installation

CHAPTER

TWO

EXAMPLES

You can try these notebook online using Binder, or view the notebooks on NBViewer.

2.1 Basic Usage

2.1.1 Birdy WPSClient example with Emu WPS

[]: from birdy import WPSClient

Use Emu WPS

https://github.com/bird-house/emu

[]: emu = WPSClient(url='http://localhost:5000/wps')
emu_i = WPSClient(url='http://localhost:5000/wps', progress=True)

Get Infos about hello

[]: emu.hello?

Run hello

[]: emu.hello(name='Birdy').get()[0]

5

https://mybinder.org/v2/gh/bird-house/birdy.git/master?filepath=notebooks
https://nbviewer.jupyter.org/github/bird-house/birdy/tree/master/notebooks/
https://github.com/bird-house/emu

Birdy Documentation, Release 0.6.8

Run a long running process

[]: result = emu_i.sleep(delay='1.0')

[]: result.get()[0]

Run a process returning a reference to a text document

[]: emu.chomsky(times='5').get()[0]

Pass a local file to a remote process

The client can look up local files on this machine and embed their content in the WPS request to the server. Just set
the path to the file or an opened file-like object.

[]: fn = '/tmp/text.txt'
with open(fn, 'w') as f:

f.write('Just an example')
emu.wordcounter(text=fn).get(asobj=True)

Automatically convert the output to a Python object

The client is able to convert input objects into strings to create requests, and also convert output strings into python
objects. This can be demonstrated with the inout process, which simply takes a variety of LiteralInputs of
different data types and directs them to the output without any change.

[]: emu.inout?

[]: import datetime as dt
result = emu.inout(string='test', int=1, float=5.6, boolean=True, time='15:45',
→˓datetime=dt.datetime(2018, 12, 12), text=None, dataset=None)

Get result as object

[]: result.get(asobj=True).text

Example with multiple_outputs

Similarly, the multiple_outputs function returns a text/plain file. The converter will automatically convert
the text file into a string.

[]: out = emu.multiple_outputs(1).get(asobj=True)[0]
print(out)

. . . or use the metalink library on the referenced metalink file:

[]: out = emu.multiple_outputs(1).get(asobj=False)[0]
print(out)

6 Chapter 2. Examples

Birdy Documentation, Release 0.6.8

[]: from metalink import download
download.get(out, path='/tmp', segmented=False)

2.1.2 Interactive usage of Birdy WPSClient with widgets

[]: from birdy import WPSClient
from birdy.client import nb_form
emu = WPSClient(url='http://localhost:5000/wps')

[]: resp = nb_form(emu, 'binaryoperatorfornumbers')

[]: resp.widget.result.get(asobj=True)

[]: nb_form(emu, 'non.py-id')

[]: nb_form(emu, 'chomsky')

2.1.3 OWSLib versus Birdy

This notebook shows a side-by-side comparison of owslib.wps.WebProcessingService and birdy.
WPSClient.

[]: from owslib.wps import WebProcessingService
from birdy import WPSClient

url = "https://bovec.dkrz.de/ows/proxy/emu?Service=WPS&Request=GetCapabilities&
→˓Version=1.0.0"

wps = WebProcessingService(url)
cli = WPSClient(url=url)

Displaying available processes

With owslib, wps.processes is the list of processes offered by the server. With birdy, the client is like a
module with functions. So you just write cli. and press Tab to display a drop-down menu of processes.

[]: wps.processes

Documentation about a process

With owslib, the process title and abstract can be obtained simply by looking at these attributes. For the process
inputs, we need to iterate on the inputs and access their individual attributes. To facilitate this, owslib.wps provides
the printInputOuput function.

With birdy, just type help(cli.hello) and the docstring will show up in your console. With the IPython
console or a Jupyter Notebook, cli.hello? would do as well. The docstring follows the NumPy convention.

2.1. Basic Usage 7

Birdy Documentation, Release 0.6.8

[]: from owslib.wps import printInputOutput
p = wps.describeprocess('hello')
print("Title: ", p.title)
print("Abstract: ", p.abstract)

for inpt in p.dataInputs:
printInputOutput(inpt)

[]: help(cli.hello)

Launching a process and retrieving literal outputs

With owslib, processes are launched using the execute method. Inputs are an an argument to execute and
defined by a list of key-value tuples. These keys are the input names, and the values are string representations. The
execute method returns a WPSExecution object, which defines a number of methods and attributes, including
isComplete and isSucceeded. The process outputs are stored in the processOutputs list, whose content is
stored in the data attribute. Note that this data is a list of strings, so we may have to convert it to a float to use it.

[]: resp = wps.execute('binaryoperatorfornumbers', inputs=[('inputa', '1.0'), ('inputb',
→˓'2.0'), ('operator', 'add')])
if resp.isSucceded:

output, = resp.processOutputs
print(output.data)

With birdy, inputs are just typical keyword arguments, and outputs are already converted into python objects. Since
some processes may have multiple outputs, processes always return a namedtuple, even in the case where there is
only a single output.

[]: z = cli.binaryoperatorfornumbers(1, 2, operator='add').get()[0]
z

[]: out = cli.inout().get()
out.date

Retrieving outputs by references

For ComplexData objects, WPS servers often return a reference to the output (an http link) instead of the actual
data. This is useful if that output is to serve as an input to another process, so as to avoid passing back and forth large
files for nothing.

With owslib, that means that the data attribute of the output is empty, and we instead access the reference
attribute. The referenced file can be written to the local disk using the writeToDisk method.

With birdy, the outputs are by default the references themselves, but it’s also possible to download these references in
the background and convert them into python objects. To trigger this automatic conversion, set convert_objects
to True when instantating the client WPSClient(url, convert_objects=True). Ini the example below,
the first output is a plain text file, and the second output is a json file. The text file is converted into a string, and the
json file into a dictionary.

[]: resp = wps.execute('multiple_outputs', inputs=[('count', '1')])
output, ref = resp.processOutputs
print(output.reference)
print(ref.reference)
output.writeToDisk('/tmp/output.txt')

8 Chapter 2. Examples

Birdy Documentation, Release 0.6.8

[]: output = cli.multiple_outputs(1).get()[0]
print(output)
as reference
output = cli.multiple_outputs(1).get(asobj=True)[0]
print(output)

2.2 Demo

2.2.1 AGU 2018 Demo

This notebook shows how to use birdy’s high-level interface to WPS processes.

Here we access a test server called Emu offering a dozen or so dummy processes.

The shell interface

[1]: %%bash
export WPS_SERVICE="http://localhost:5000/wps?Service=WPS&Request=GetCapabilities&
→˓Version=1.0.0"
birdy -h

Usage: birdy [OPTIONS] COMMAND [ARGS]...

Birdy is a command line client for Web Processing Services.

Documentation is available on readthedocs:
http://birdy.readthedocs.org/en/latest/

Options:
--version Show the version and exit.
--cert TEXT Client side certificate containing both certificate

and private key.

-S, --send Send client side certificate to WPS. Default: false
-s, --sync Execute process in sync mode. Default: async mode.
-t, --token TEXT Token to access the WPS service.
-l, --language TEXT Set the accepted language to send to the WPS service.
-L, --show-languages Show a list of accepted languages for the WPS service.
-h, --help Show this message and exit.

Commands:
ultimate_question Answer to the ultimate question: This process...
sleep Sleep Process: Testing a long running process,...
nap Afternoon Nap (supports sync calls only): This...
bbox Bounding box in- and out: Give bounding box,...
hello Say Hello: Just says a friendly Hello.Returns a...
dummyprocess Dummy Process: DummyProcess to check the WPS...
wordcounter Word Counter: Counts words in a given text.
chomsky Chomsky text generator: Generates a random...
inout In and Out: Testing all WPS input and output...
binaryoperatorfornumbers Binary Operator for Numbers: Performs operation...
show_error Show a WPS Error: This process will fail...
multiple_outputs Multiple Outputs: Produces multiple files and...

(continues on next page)

2.2. Demo 9

Birdy Documentation, Release 0.6.8

(continued from previous page)

esgf_demo ESGF Demo: Shows how to use WPS metadata for...
output_formats Return different output formats.: Dummy process...
poly_centroid Approximate centroid of a polygon.: Return the...
ncmeta Return NetCDF Metadata: Return metadata from a...
non.py-id Dummy process including non-pythonic...
simple_dry_run Simple Dry Run: A dummy download as simple...
ncml Test NcML THREDDS capability: Return links to

an...

translation Translated process: Process including...

[2]: %%bash
export WPS_SERVICE="http://localhost:5000/wps?Service=WPS&Request=GetCapabilities&
→˓Version=1.0.0"
birdy hello -h

Usage: birdy hello [OPTIONS]

Say Hello: Just says a friendly Hello.Returns a literal string output with
Hello plus the inputed name.

Options:
--version Show the version and exit.
--name TEXT Your name
--output_formats TEXT... Modify output format (optional). Takes three

arguments, output name, as_reference (True, False,
or None for process default), and mimetype(None
for process default).

-h, --help Show this message and exit.

[3]: %%bash
export WPS_SERVICE="http://localhost:5000/wps?Service=WPS&Request=GetCapabilities&
→˓Version=1.0.0"
birdy hello --name stranger

Output:
output=['Hello stranger']

The python interface

The WPSClient function creates a mock python module whose functions actually call a remote WPS process. The
docstring and signature of the function are dynamically created from the remote’s process description. If you type
wps. and then press Tab, you should see a drop-down list of available processes. Simply call help on each process
of type ? after the process to print the docstring for that process.

[4]: from birdy import WPSClient
url = "http://localhost:5000/wps?Service=WPS&Request=GetCapabilities&Version=1.0.0"
wps = WPSClient(url, verify=False)
help(wps.binaryoperatorfornumbers)

Help on method binaryoperatorfornumbers in module birdy.client.base:

binaryoperatorfornumbers(inputa=2.0, inputb=3.0, operator='add', output_formats=None)
→˓method of birdy.client.base.WPSClient instance

Performs operation on two numbers and returns the answer. This example process is
→˓taken from Climate4Impact. (continues on next page)

10 Chapter 2. Examples

Birdy Documentation, Release 0.6.8

(continued from previous page)

Parameters

inputa : float

Enter Input 1
inputb : float

Enter Input 2
operator : {'add', 'substract', 'divide', 'multiply'}string

Choose a binary Operator

Returns

output : float

Binary operator result

Type wps. and the press Tab, you should see a drop-down list of available processes.

[5]: # wps.

Process execution

Processes are executed by calling the function. Each process instantaneoulsy returns a WPSExecute object. The
actual output values of the process are obtained by calling the get method. This get method returns a namedtuple
storing the process outputs as native python objects.

[6]: resp = wps.binaryoperatorfornumbers(1, 2, operator='add')
print(resp)
resp.get()

<birdy.client.utils.WPSExecution object at 0x108237d30>

[6]: binaryoperatorfornumbersResponse(
output=3.0

)

For instance, the inout function returns a wide variety of data types (float, integers, dates, etc) all of which are
converted into a corresponding python type.

[7]: wps.inout().get()

[7]: inoutResponse(
string='This is just a string',
int=7,
float=3.14,
boolean=True,
angle=90.0,
time=datetime.time(12, 0),
date=datetime.date(2012, 5, 1),
datetime=datetime.datetime(2016, 9, 2, 12, 0, tzinfo=tzutc()),
string_choice='scissor',
string_multiple_choice='gentle albatros',
int_range=1,
any_value='any value',
ref_value='Scotland',
text='http://localhost:5000/outputs/e7700e9c-559c-11eb-bcba-784f435e8862/input.txt

→˓', (continues on next page)

2.2. Demo 11

Birdy Documentation, Release 0.6.8

(continued from previous page)

dataset='http://localhost:5000/outputs/e7700e9c-559c-11eb-bcba-784f435e8862/input_
→˓pd0bgv88.txt',

bbox=BoundingBox(minx='0.0', miny='0.0', maxx='10.0', maxy='10.0', crs=Crs(id=
→˓'epsg:4326', naming_authority=None, category=None, type=None, authority='EPSG',
→˓version=None, code=4326, axisorder='yx', encoding='code'), dimensions=2)
)

Retrieving outputs by references

For ComplexData objects, WPS servers often return a reference to the output (an http link) instead of the actual
data. This is useful if that output is to serve as an input to another process, so as to avoid passing back and forth large
files for nothing.

With birdy, the outputs are by default return values are the references themselves, but it’s also possible to down-
load these references in the background and convert them into python objects. To trigger this automatic conversion,
set asobj to True when calling the get method. In the example below, we’re using a dummy process called
output_formats, whose first output is a netCDF file, and second output is a json file. With asobj=True, the
netCDF file is opened and returned as a netcdf4.Dataset instance, and the json file into a dictionary.

[8]: # NBVAL_SKIP
This cell is failing due to an unautheticated SSL certificate
out = wps.output_formats()
nc, json = out.get()
print(out.get())
ds, json = out.get(asobj=True)
print(json)
ds

output_formatsResponse(
netcdf='http://localhost:5000/outputs/e78722ee-559c-11eb-8bc2-784f435e8862/dummy.

→˓nc',
json='http://localhost:5000/outputs/e78722ee-559c-11eb-8bc2-784f435e8862/dummy.

→˓json'
)
{'testing': [1, 2]}

[8]: <xarray.Dataset>
Dimensions: (time: 1)
Coordinates:

* time (time) float64 42.0
Data variables:

empty
Attributes:

title: Test dataset

12 Chapter 2. Examples

Birdy Documentation, Release 0.6.8

Progress bar

It’s possible to display a progress bar when calling a process. The interface to do so at the moment goes like this. Note
that the cancel button does not do much here, as the WPS server does not support interruption requests.

[9]: wps = WPSClient(
'http://localhost:5000/wps',
progress=True)

resp = wps.sleep()

HBox(children=(IntProgress(value=0, bar_style='info', description='Processing:'),
→˓Button(button_style='danger'...

2.2. Demo 13

Birdy Documentation, Release 0.6.8

14 Chapter 2. Examples

CHAPTER

THREE

DEVELOPMENT

3.1 Get Started!

Check out code from the birdy GitHub repo and start the installation:

$ git clone https://github.com/bird-house/birdy.git
$ cd birdy
$ conda env create -f environment.yml
$ python setup.py develop

Install additional dependencies:

$ pip install -r requirements_dev.txt

When you’re done making changes, check that your changes pass flake8 and the tests:

$ flake8
$ pytest

Or use the Makefile::

$ make lint
$ make test
$ make test-all

3.2 Write Documentation

You can find the documentation in the docs/source folder. To generate the Sphinx documentation locally you can use
the Makefile:

$ make docs

15

Birdy Documentation, Release 0.6.8

3.3 Bump a new version

Make a new version of Birdy in the following steps:

• Make sure everything is commit to GitHub.

• Update CHANGES.rst with the next version.

• Dry Run: bumpversion --dry-run --verbose --new-version 0.3.1 patch

• Do it: bumpversion --new-version 0.3.1 patch

• . . . or: bumpversion --new-version 0.4.0 minor

• Push it: git push --tags

See the bumpversion documentation for details.

16 Chapter 3. Development

https://pypi.org/project/bumpversion/

CHAPTER

FOUR

API REFERENCE

• Using the command line

• Using the Python library

4.1 Using the command line

Birdy has a command line interface to interact with a Web Processing Service.

4.1.1 Example

Here is an example with Emu WPS service:

$ birdy -h
$ birdy hello -h
$ birdy hello --name stranger
'Hello Stranger'

4.1.2 Configure WPS service URL

By default Birdy talks to a WPS service on URL http://localhost:5000/wps. You can change this URL by setting the
enivronment variable WPS_SERVICE:

$ export WPS_SERVICE=http://localhost:5000/wps

4.1.3 Configure SSL verification for HTTPS

In case you have a WPS serive using HTTPS with a self-signed certificate you need to configure the environment
variable WPS_SSL_VERIFY:

deactivate SSL server validation for a self-signed certificate.
$ export WPS_SSL_VERIFY=false

You can also set the path of the service certificate. Read the requests documentation.

17

http://emu.readthedocs.io/en/latest/
http://localhost:5000/wps
http://docs.python-requests.org/en/master/user/advanced/#ssl-cert-verification

Birdy Documentation, Release 0.6.8

4.1.4 Use an OAuth2 access token

If the WPS service is secured by an OAuth2 access tokens then you can provide an access token with the --token
option:

$ birdy --token abc123 hello --name stranger

4.1.5 Use client certificate to access WPS service

If the WPS service is secured by x509 certificates you can add a certificate with the --cert option to a request:

run hello with certificate
$ birdy --cert cert.pem hello --name stranger

4.1.6 Using the output_formats option for a process

Each process also has a default option named output_formats. It can be used to override a process’ output format’s
default values.

This option takes three parameters;

The format identifier: the name given to it

The as reference parameter: if the output is returned as a link of not. Can be True, False, or None (which uses
the process’ default value)

The MIME type: of which MIME type is the output. Unless the process has multiple supported mime types, this can
be left to None.

Looking at the emu process output_formats, the JSON output’s default’s the as reference parameter to False and
returns the content directly:

$ birdy output_formats
Output:
netcdf=http://localhost:5000/outputs/d9abfdc4-08d6-11eb-9334-0800274cd70c/dummy.nc
json=['{"testing": [1, 2]}']

We can then use the output_formats option to redefine it:

$ birdy output_formats --output_formats json True None
Output:
netcdf=http://localhost:5000/outputs/38e9aefe-08db-11eb-9334-0800274cd70c/dummy.nc
json=http://localhost:5000/outputs/38e9aefe-08db-11eb-9334-0800274cd70c/dummy.json

4.2 Using the Python library

The WPSClient class aims to make working with WPS servers easy, even without any prior knowledge of WPS.

Calling the WPSClient class creates an instance whose methods call WPS processes. These methods are generated
at runtime based on the process description provided by the WPS server. Calling a function sends an execute request
to the server. The server response is parsed and returned as a WPSExecution instance, which includes information
about the job status, the progress percentage, the starting time, etc. The actual output from the process are obtained by
calling the get method.

18 Chapter 4. API Reference

Birdy Documentation, Release 0.6.8

The output is parsed to convert the outputs in native Python whenever possible. LiteralOutput objects (string, float,
integer, boolean) are automatically converted to their native format. For ComplexOutput, the module can either return
a link to the output files stored on the server, or try to convert the outputs to a Python object based on their mime type.
This conversion will occur with get(asobj=True). So for example, if the mime type is ‘application/json’, the output
would be a dict.

Inputs to processes can be native Python types (string, float, int, date, datetime), http links or local files. Local files
can be transferred to a remote server by including their content into the WPS request. Simply set the input to a valid
path or file object and the client will take care of reading and converting the file.

4.2.1 Example

If a WPS server with a simple hello process is running on the local host on port 5000:

>>> from birdy import WPSClient
>>> emu = WPSClient('http://localhost:5000/')
>>> emu.hello
<bound method hello of <birdy.client.base.WPSClient object>>
>>> print(emu.hello.__doc__)
""
Just says a friendly Hello. Returns a literal string output with Hello plus the
→˓inputed name.

Parameters

name : string

Please enter your name.

Returns

output : string

A friendly Hello from us.

""

Call the function. The output is a namedtuple
>>> emu.hello('stranger')
hello(output='Hello stranger')

4.2.2 Authentication

If you want to connect to a server that requires authentication, the WPSClient class accepts an auth argument that
behaves exactly like in the popular requests module (see requests Authentication)

The simplest form of authentication is HTTP Basic Auth. Although wps processes are not commonly protected by
this authentication method, here is a simple example of how to use it:

>>> from birdy import WPSClient
>>> from requests.auth import HTTPBasicAuth
>>> auth = HTTPBasicAuth('user', 'pass')
>>> wps = WPSClient('http://www.example.com/wps', auth=auth)

Because any requests-compatible class is accepted, custom authentication methods are implemented the same way as
in requests.

For example, to connect to a magpie protected wps, you can use the requests-magpie module:

4.2. Using the Python library 19

https://2.python-requests.org/en/master/user/authentication/
https://github.com/ouranosinc/magpie
https://github.com/ouranosinc/requests-magpie

Birdy Documentation, Release 0.6.8

>>> from birdy import WPSClient
>>> from requests_magpie import MagpieAuth
>>> auth = MagpieAuth('https://www.example.com/magpie', 'user', 'pass')
>>> wps = WPSClient('http://www.example.com/wps', auth=auth)

4.2.3 Output format

Birdy automatically manages process output to reflect it’s default values or Birdy’s own defaults.

However, it’s possible to customize the output of a process. Each process has an input named ``output_formats`, that
takes a dictionary as a parameter:

example format = {
'output_identifier': {
'as_ref': <True, False or None>
'mimetype': <MIME type as a string or None>,
},
}

A dictionary defining netcdf and json outputs
>>> custom_format = {
>>> 'netcdf': {
>>> 'as_ref': True,
>>> 'mimetype': 'application/json',
>>> },
>>> 'json': {
>>> 'as_ref': False,
>>> 'mimetype': None
>>> }
>>> }

Utility functions can also be used to create this dictionary:

>>> custom_format = create_output_dictionary('netcdf', True, 'application/json')
>>> add_output_format(custom_format, 'json', False, None)

The created dictionary can then be used with a process:

>>> cli = WPSClient("http://localhost:5000")
>>> z = cli.output_formats(output_formats=custom_format).get()
>>> z

20 Chapter 4. API Reference

CHAPTER

FIVE

CHANGE HISTORY

5.1 0.6.9 (2020-03-10)

Changes:

• Fixed passing Path objects (#169)

• Trying to guess mime type of inputs rather than taking the first value (#171)

5.2 0.6.6 (2020-03-03)

Changes:

• Fixed the docs (#150).

• Added outputs to execute in CLI (#151).

• Updated tests (#152).

• Added offline tests (#153).

• Updated conda links (#155).

• Handle Python keywords (#158)

• Fix emu (#159).

• Updated demo notebook tests (#160).

• Added ECMWF demo notebook (#162).

• Added roocs wps demo notebook (#165).

• Added missing files in MANIFEST.in for pypi install (#166).

5.3 0.6.5 (2019-08-19)

Changes:

• Fix arguments ordering (#139).

• Fix imports warning (#138).

• Using nbsphinx (#142).

• Fix pip install (#143).

21

Birdy Documentation, Release 0.6.8

• Add custom authentication methods (#144).

• Use oauth token (#145).

• Skip Python 2.7 (#146).

5.4 0.6.4 (2019-07-03)

Changes:

• Fix default converter to return bytes (#137).

5.5 0.6.3 (2019-06-21)

Changes:

• Disabled segmented metalink downloads (#132).

• Fix nested conversion (#135).

5.6 0.6.2 (2019-06-06)

Changes:

• Added support for passing sequences (list, tuple) as WPS inputs (#128).

5.7 0.6.1 (2019-05-27)

Changes:

• Added verify argument when downloading files to disk (#123).

• Bugfixes: #118, #121

5.8 0.6.0 (2019-04-04)

Changes:

• Added conversion support for nested outputs (metalink, zip) (#114).

• Added support for Metalink (#113).

• Added support for zip converter (#111).

• Added support for ESGF CWT API (#102).

• Speed up by using DescribeProcess with identifier=all (#98).

• Added support for passing local files to server as raw data (#97).

• Cleaned up notebooks (#107).

• Various Bugfixes: #83, #91, #99

22 Chapter 5. Change History

Birdy Documentation, Release 0.6.8

5.9 0.5.1 (2018-12-18)

Changes:

• Added support to launch Jupyter notebooks with birdy examples on binder (#94, #95).

5.10 0.5.0 (2018-12-03)

Changes:

• Renamed pythonic WPS client (#63): birdy.client.base.WPSClient and from birdy import
WPSClient.

• Added WPSResult for WPS outputs as namedtuple (#84, #64).

• Support for Jupter Notebooks (#40): cancel button (work in progress), progress bar, input widget.

• Updated notebooks with examples for WPSClient.

5.11 0.4.2 (2018-09-26)

Changes:

• Fixed WPS default parameter (#52).

• Using WPS_SSL_VERIFY environment variable (#50).

5.12 0.4.1 (2018-09-14)

Changes:

• Fixed test-suite (#49).

• Import native client with import_wps (#47).

• Fix: using string type when dataType is not provided (#46).

• Updated docs for native client (#43).

5.13 0.4.0 (2018-09-06)

Release for Dar Es Salaam.

Changes:

• Conda support on RTD (#42).

• Fix optional input (#41).

5.9. 0.5.1 (2018-12-18) 23

Birdy Documentation, Release 0.6.8

5.14 0.3.3 (2018-07-18)

Changes:

• Added initial native client (#24, #37).

5.15 0.3.2 (2018-06-06)

Changes:

• Fix MANIFEST.in.

5.16 0.3.1 (2018-06-06)

Changes:

• Fix bumpversion.

5.17 0.3.0 (2018-06-05)

Changes:

• Use bumpversion (#29).

• Use click for CLI (#6).

• Using GitHub templates for issues, PRs and contribution guide.

5.18 0.2.2 (2018-05-08)

Fixes:

• Update travis for Python 3.x (#19).

• Fix parsing of WPS capabilities with % (#18).

New Features:

• using mode for async execution in OWSLib (#22).

5.19 0.2.1 (2018-03-14)

Fixes:

• Fixed Sphinx and updated docs: #15.

New Features:

• Fix #14: added --cert option to use x509 certificates.

24 Chapter 5. Change History

Birdy Documentation, Release 0.6.8

5.20 0.2.0 (2017-09-25)

• removed buildout . . . just using conda.

• cleaned up docs.

• updated travis.

• fixed tests.

• added compat module for python 3.x

5.21 0.1.9 (2017-04-07)

• updated buildout and Makefile.

• updated conda environment.

• fixed tests.

• replaced nose by pytest.

• pep8.

• fixed travis.

• fixed ComplexData input.

• show status message in log.

5.22 0.1.8 (2016-05-02)

• added backward compatibility for owslib.wps without headers and verify parameter.

5.23 0.1.7 (2016-05-02)

• added twitcher token parameter.

• using ssl verify option again.

5.24 0.1.6 (2016-03-22)

• added support for bbox parameters.

5.20. 0.2.0 (2017-09-25) 25

Birdy Documentation, Release 0.6.8

5.25 0.1.5 (2016-03-15)

• fixed wps init (using standard owslib).

• update makefile.

5.26 0.1.4 (2015-10-29)

• using ssl verify option of WebProcessingSerivce

• moved python requirements to requirements/deploy.txt

5.27 0.1.3 (2015-08-20)

• more unit tests.

• fixed unicode error in wps description.

• using latest ComplexDataInput from owslib.wps.

5.28 0.1.2 (2015-08-14)

• fixed encoding of input text files.

• more unit tests.

5.29 0.1.1 (2015-08-13)

• allow local file path for complex inputs.

• send complex data inline with requet to remote wps service.

5.30 0.1.0 (2014-12-02)

• Initial Release.

26 Chapter 5. Change History

PYTHON MODULE INDEX

b
birdy.cli, 17
birdy.client, 18

27

Birdy Documentation, Release 0.6.8

28 Python Module Index

INDEX

B
birdy.cli

module, 17
birdy.client

module, 18

M
module

birdy.cli, 17
birdy.client, 18

29

	Installation
	Examples
	Development
	API Reference
	Change History
	Python Module Index
	Index

